Эндоплазматическая сеть ретикулум

Эндоплазматическая сеть ретикулум

Эндоплазматический ретикулум (ЭПС) – система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называется эргастоплазмой.

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвреживании ряда токсичных и лекарственных веществ (например, барбитуратов). В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальция. Комплекс Гольджи

Пластинчатый комплекс Гольджи – это упаковочный центр клетки. Представляет собой совокупность дик-тиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома – стопка из 3—12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки. При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гли-копротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

10. Строение и функции немембранных структур клетки

Это округлая рибонуклеопротеиновая частица. Диаметр ее составляет 20–30 нм. Состоит рибосома из большой и малой субъединиц, которые объединяются в присутствии нити м-РНК. Комплекс из группы рибосом, объединенных одной молекулой м-РНК наподобие нитки бус, называется полисомой.

Полисомы гранулярной ЭПС образуют белки, выводимые из клетки и используемые для нужд всего организма.

Это трубчатые полые образования, лишенные мембраны. Внешний диаметр составляет 24 нм, ширина просвета – 15 нм, толщина стенки – около 5 нм. В свободном состоянии представлены в цитоплазме, также являются структурными элементами жгутиков, центриолей, веретена деления, ресничек.

1) являются опорным аппаратом клетки;

2) определяют формы и размеры клетки;

3) являются факторами направленного перемещения внутриклеточных структур.

Это тонкие и длинные образования, которые обнаруживаются по всей цитоплазме. Виды микрофила-ментов:

1) актиновые. Содержат сократительные белки (актин), обеспечивают клеточные формы движения;

2) промежуточные (толщиной 10 нм). Их пучки обнаруживаются по периферии клетки под плазмал-еммой и по окружности ядра. Выполняют опорную (каркасную) роль.

Клетки всех животных, некоторых грибов, водорослей, высших растений характеризуются наличием клеточного центра. Клеточный центр обычно располагается рядом с ядром.

Он состоит из двух центриолей, расположенных взаимоперпендикулярно.

Из центриолей клеточного центра во время деления клетки образуются нити веретена деления.

Центриоли поляризуют процесс деления клетки, чем достигается равномерное расхождение сестринских хромосом (хроматид) в анафазе митоза.

Внутри клетки находится цитоплазма. Она состоит из жидкой части – гиалоплазмы (матрикса), орга-нелл и цитоплазматических включений.

Гиалоплазма – основное вещество цитоплазмы. Ги-алоплазму можно рассматривать как сложную коллоидную систему, способную существовать в двух состояниях: золеобразном (жидком) и гелеобразном, которые взаимно переходят одно в другое.

1) образование истинной внутренней среды клетки;

2) поддержание определенной структуры и формы клетки;

3) обеспечение внутриклеточного перемещения веществ и структур;

4) обеспечение адекватного обмена веществ как внутри самой клетки, так и с внешней средой.

Включения – это относительно непостоянные компоненты цитоплазмы. Выделяют:

1) запасные питательные вещества, которые используются самой клеткой в периоды недостаточного поступления питательных веществ извне;

2) продукты, которые подлежат выделению из клетки;

Строение и функции эндоплазматического ретикулума, комплекса Гольджи

Эндоплазматическая сеть

Эндоплазматический ретикулум (ЭПС) — система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

Читайте также:  Элькар срок годности после вскрытия

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называется эргастоплазмой.

Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвреживании ряда токсичных и лекарственных веществ (например, барбитуратов). В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальция.

Комплекс Гольджи

Пластинчатый комплекс Гольджи — это упаковочный центр клетки. Представляет собой совокупность диктиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома — стопка из 3—12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки. При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гликопротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

Источник: Н. С. Курбатова, Е. А. Козлова «Конспект лекций по общей биологии»

Строение цитоплазмы в настоящее время изучают на молекулярном уровне. Благодаря электронному микроскопу было подтверждено ранее высказанное предположение о существовании сетчатой структуры цитоплазмы в виде особого цитоскелета. Это универсальное для всех животных и растительных клеток субмикроскопическое строение цитоплазмы получило название эндоплазматической сети, или эндоплазматического ретикулума.

Итак, эндоплазматическая сеть представляет систему внутриклеточных канальцев, вакуолей, цистерн, ограниченных цитоплазматическими мембранами, соединенных анастомозами и пронизывающих цитоплазму клетки. Пространства эндоплазматической сети заполнены материалом разной прозрачности, по электронной плотности отличающимся от окружающей цитоплазмы. Различают два типа эндоплазматической сети: гранулярную и гладкую (агранулярную).

Гранулярная эндоплазматическая сеть, раньше называемая эргастоплазмой, является одним из компонентов сложной внутриклеточной системы, участвующей в синтезе белка.

Гладкая эндоплазматическая сеть участвует в синтезе, и передвижении липидов и гликогена в клетке.

Функциональное значение эндоплазматической сети многообразно. Ее мембраны пронизывают и связывают в единое целое множество клеток. В отдельных пунктах канальцы эндоплазматической сети связаны с наружной цитоплазматической мембраной.

Аналогичная связь канальцев эндоплазматической сети с ядерной мембраной была обнаружена на животных и растительных клетках. Также были получены данные об участии канальцев эндоплазматической сети в регуляции клеточного обмена, в передаче раздражений от клетки к клетке и т.п.

Комплекс Гольджи

В 1898 г. Итольянский цитолог Гольджи, используя метод серебрения, впервые обнаружил в основной цитоплазме клетки сетчатую структуру, названную им «внутриклеточным сетчатым аппаратом», впоследствии получившим название «аппарата Гольджи».

С помощью электронного микроскопа было установлено, что комплекс Гольджи состоит из трех компонентов:

1) системы уплощенных цистерн, ограниченных гладких мембран, расположенных группами и плотно прилегающих друг к другу;

2) мелких, довольно плотных пузырьков, обычно располагающихся на концах цистерн;

3) крупных вакуолей (0,2-0,3 микрона), ограниченных такими же мембранами как и цистерны.

Одна из характерных особенностей аппарата Гольджи – отсутствие рибосом, которые имеются на мембранах гранулярной эндоплазматической сети. Функции аппарата Гольджи – это участие в построении клеточной стенки и в синтезе полисахаридов.

Рибосомы – это гранулы, расположенные в гиаплазме или прикрепленные к поверхности мембран эндоплазматического ретикулума. Они обнаружены также в митохондриях и пластидах. Рибосомы состоят из белка и рибонуклеиновой кислоты (РНК) и не имеют мембранной структуры. Функция Рибосом – это синтез белка, самовоспроизводство живой материи.

Этот процесс происходит в рибосомах, расположенных группой и связанных между собой нитевидной молекулой и РНК такие группы называются Полисомами. Считают, что рибосомы формируются в ядре. Поскольку в процессе жизнедеятельности происходит постоянное обновление белков цитоплазмы и ядра, то без рибосом клетка долго существовать не может.

Читайте также:  Индекс рома гемотест

Сферосомы – это округлые тельца липидно-протеиновой природы. Они возникают из концевых вздутий тяжей эндоплазматической сети и богаты ферментами, необходимыми для синтеза жиров. Сферосомы лишены типичной ограничивающей мембраны.

Производные протопласта – клеточная стенка, вакуоль, эргостические вещества, физиологически активные вещества.

Физиологически активные вещества:

Ферменты (энзимы) Были открыты в 1814 г. Русским академиком Кирхгофом. Ферменты – это органические катализаторы белковой природы, они находятся во всех органеллах и компонентах клетки. В клетках растений осуществляются многочисленные обменные реакции.

Достаточно вспомнить фотосинтез, синтез и диссимиляцию таких веществ, как белки, жиры, углеводы. Все они проходят при обязательном участии ферментов. Ферменты не только направляют ход реакции, но и убыстряют ее в десятки раз.

Фитогормоны – это вещества высокой физиологической активности. Наиболее полно изучены гормоны роста. Под их влиянием убыстряется ростовые процессы: деление и рост клеток, формирование органов.

Витамины – были открыты в 1880 г. Луниным, а термин предложен позднее польским ученым Функом (1912).

Различают витамины, растворимые в воде, например В, С, РР, Н и др; они находятся в клеточном соке. Витамины растворимые в жирах: А, Д, Е, содержатся в цитоплазме. Обычно витамины локализованы в определенных органах растений.

Так витамины группы В содержаться в зародыше, в кожуре семян или молодых проростках, например ржи, пшеницы. Витамин С больше всего в плодах шиповника, лимона, черной смородины. Витамин Е – в растительных маслах, проростках пшеницы и кукурузы, в плодах цитрусовых и томатах. Витамин К – в листьях крапивы, корнеплодах моркови. Всего известно около 40 витаминов. В теле растения витамины принимают участие в обменных реакциях и находятся в химической связи с ферментами клеток.

Фитонциды и антибиотики. Это группы веществ, которые вырабатываются как клетками низших растений (антибиотики), так и высших (фитонциды). Эти вещества служат для защиты растений.

Эргостические вещества – это продукты запаса или обмена.

Углеводы – Молекула углевода содержит углерод, водород и кислород. Крахмал – соединение, часто встречающееся в качестве запасного продукта. Он образуется в процессе фотосинтеза в хлоропластах (фотосинтетический, или первичный крахмал). Затем происходит его ферментативное превращение — осахаривание, и в виде сахара (глюкозы) он транспортируется из листа на построение органов растений или в запас.

Гликоген6Н10О5)n накапливается в качестве запасного продукта преимущественно у незеленых растений (бактерий, грибы), а также у некоторых сине-зеленых водорослей. Гликоген широко распространен как запасной продукт у животных.

Инулин6Н10О5)n накапливается у некоторых видов сем. Астровые (сложноцветные): Цикория, земляной груши. Он содержится в клеточном соке в состоянии коллоидного раствора. Количество инулина в подземных органах – корнеплодах цикория – достигает – 12%. При действии спиртом инулин выпадает в виде сферокристаллов.

Жиры – жиры (жирные масла), широко распространенный запасной продукт. Встречается у водорослей, в спорах плаунов, папоротников и хвощей, а также в семенах многих голосеменных и покрытосеменных. Жирные масла отличаются высокой калорийностью.

Откладываются жиры в особых ультраструктурах – сферосомах, дислоцированных в цитоплазме. Чаще всего жиры накапливаются в семенах, иногда в плодах (маслина). Жиры хорошо растворяются в эфире, бензоле, толуоле, ксилоле, бензине. В спирте растворяются плохо, в воде нерастворимы.

Белки – Растения, как и животные, содержат много разнообразных белков. Одни группы белков составляют основную часть цитоплазмы – конституционные белки. Другие белки — ферменты – направляют ход всех жизненных процессов, т.е. химических превращений. Особую группу составляют запасные белки.

Молекула белка состоит из аминокислот. Из почти 150 известных в природе аминокислот лишь 22 входят в состав белков. Их чередование в молекуле белка определяет его бесконечное разнообразие. Каждый вид растения имеет свой набор белков специфического строения.

Запасные белки, как и углеводы, являются вторичными продуктами ассимиляции. (Участие в процессах обмена веществ называется ассимиляция и диссимиляция). Это обычные простые белки — протеины, построенные из остатков аминокислот.

Наиболее распространены алейроновые (протеиновые) зерна, которые образуются вследствие высыхания вакуолей, выпадения в осадок белка и его кристаллизации.

Это, однако, обратимый процесс, ибо при прорастании семени, когда оно обогащается водой и появляется клеточный сок, алейроновые зерна вновь превращаются в вакуоли.

Читайте также:  Белок в моче и лейкоциты при беременности причины

Алейроновые зерна каждого вида растения сохраняют определенную структуру и, подобно зернам крахмала, служат надежным видовым признаком. Физиологически активные вещества – ферменты (энзимы), фитогармоны, фитонциды (у высших) антибиотики (у низших). Витамины (создаются растениями). Поливитамины: А, В, В1, 12-6, С, Д, РР, Е, К.

гистология клетка растение гриб

Лекция 2. Тема: Гистология и органография растений

Рассмотрены следующие вопросы:

1) Понятие о тканях

3) Органы растений и их строение и функции

Меристематические ткани

Первичная и вторичная меристема. Первичная меристема возникает в самом начале развития организма. Оплодотворенная яйцеклетка делится и образует зародыш, который состоит из первичной меристемы, вторичная возникает, как правило, позднее из первичной или из уже дифференцированных тканей. Из первичной меристемы образуются первичные ткани, из вторичной – вторичные.

По месту расположения различают четыре вида меристем:

Верхушечная (апикальная) меристема. Находится на верхушках главных и боковых осей стебля и корня. Она определяет главным образом рост органов в длину.

По происхождению она первичная. На верхушке стебля расположена небольшая группа паренхимных клеток (реже одна клетка), которые довольно быстро делятся.

Это инициальные клетки. Ниже лежат производные инциальных клеток, деление которых происходит реже. А еще ниже в меристеме обосабливаются три группы клеток, из которых дифференцируются ткани первичного тела: протодерма – поверхностный слой клеток, дающий начало покровной ткани; прокамбий – удлиненные клетки меристемы с заостренными концами, расположенные вдоль вертикальной оси группами, из них образуются проводящие и механические ткани и вторичная меристема (камбий).

Верхушечная меристема корня имеет немного другое строение. На верхушке располагаются инициальные клетки, дающие начало трем слоям: дерматогену, дифференцирующемуся в эпиблему; периблеме, дающей начало тканям первичной коры; плероме, дифференцирующейся в ткани центрального цилиндра.

Боковая (латеральная) меристема – камбий. Располагается цилиндром вдоль осевых органов параллельно их поверхности. Обычно она вторичная. Обуславливает разрастание органов в толщину. Чаще ее называют камбием.

Вставочная (интеркалярная) меристема.

Закладывается у основания междоузлий побегов, листьев, цветоножек и других органов. Это первичная или вторичная меристема, она определяет рост органов в длину.

Раневая (травматическая) меристема. Возникает на любом участке тела растения, где нанесена травма. По происхождению она вторичная.

Покровные ткани

Главная функция – защита растений от высыхания и других неблагоприятных воздействий внешней среды. В зависимости от происхождения различают три группы покровных тканей: эпидерму, пробку, корку.

Эпидерма – Первичная покровная ткань, которая образуется из протодермы, покрывает листья и молодые стебли. Чаще всего эпидерма состоит из одного ряда живых, плотно сомкнутых клеток. Защитная функция эпидермы усиливается выростами ее клеток (трихомами) – волосками разнообразного строения.

В эпидерме имеются особые образования для газообмена и транспирации – устьичные аппараты, состоящие из двух замыкающих клеток и межклетника между ними, который называется устьичной щелью.

Устьичные аппараты у наземных растений расположены преимущественно на нижней стороне листовой пластинки, а у плавающих листьев водяных растений — только на верхней стороне.

Пробка – (перидерма). Клетки эпидермы вследствие роста стебля в толщину деформируются и отмирают. К этому времени появляется вторичная покровная ткань – пробка. Ее образование связано с деятельностью вторичной меристемы – пробкового камбия (феллогена). В общем, перидерма – это комплекс, состоящий из трех тканей: феллогена – пробкового камбия, феллемы – собственно пробки и феллодермы – пробковой паренхимы.

Пробка состоит из правильных радиальных рядов плотно расположенных клеток, стенки которых опробковели. В результате опробковения стенок содержимое клеток феллемы (отмирает). Остается слой мертвых клеток без межклетников, который не пропускает ни воду, ни газы. Этот слой надежно защищает органы растения от излишнего испарения и неблагоприятных внешних воздействий.

Для транспирации и газообмена в пробке имеются особые образования – чечевички, заполненные округлыми клетками, между которыми имеются большие межклетники. Сверху они имеют вид небольших бугорков с трещиной посередине.

Корка (ритидом). Корка образуется на смену пробке, поэтому ее иногда называют третичной покровной тканью. В типичных случаях корка встречается у деревьев.

Изолированные от центрального цилиндра отмершие слои тканей уплотняются, деформируются и образуют корку. Таким образом, корка представляет целый комплекс разнородных, сильно деформированных мертвых тканей.

Ссылка на основную публикацию
Эндокринолог имр обнинск
Эндокринолог – врач-специалист, занимающийся диагностикой, лечением и профилактикой заболеваний эндокринной системы. Визит к эндокринологу может предусматривать обследование таких органов, как...
Электрофорез с ношпой для глаз ребенку
Электрофорез – это метод безопасного и безболезненного введения медицинских препаратов к очагу повреждения. Под воздействием электрических импульсов лекарственные средства превращаются...
Электрофорез шейного отдела позвоночника как делать
К возрасту 40 лет, а чаще и гораздо раньше многие пациенты обращаются к врачу с жалобами на боли в позвоночнике....
Эндокринолог пролетарская
ТЕЛ.: 460-99-00; 912-03-00 График работы: ежедневно с 09:00 до 21:00, без выходных Во всех центрах АльфаМед Вы можете пройти тестирование...
Adblock detector